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Code Performance as a Function of Block Size
S. Dolinar,1 D. Divsalar,1 and F. Pollara1

The recent development of turbo codes has stirred new interest in trying to un-
derstand how closely practical codes can approach the theoretical limits on code
performance. This article reformulates Shannon’s sphere-packing bound in a nor-
malized form conducive to analyzing the relative performance of families of turbo
codes. Even though this bound is achievable only by a (generally mythical) per-
fect spherical code for the continuous-input additive white Gaussian noise (AWGN)
channel, it still can serve as a useful performance benchmark against which all
codes of a given rate r and information block size k can be compared. A mea-
sure of imperfectness relative to this bound is defined and evaluated for a family
of turbo codes and several other well-known codes. Simulations show that these
turbo codes approach perfectness closely (within 0.7 dB) and almost uniformly over
a wide range of code rates and block sizes. The implication is that turbo codes
are near-optimal codes even for block sizes much smaller than previously believed.
Finally, the sphere-packing lower bound also is compared to the average perfor-
mance of randomly selected codes for the continuous-input AWGN channel and to
an upper bound on the average performance of randomly selected codes for the
binary-input AWGN channel.

I. Introduction

A. Capacity Limits

The excitement about turbo codes [1] was sparked by their close approach to the ultimate performance
limits dictated by channel capacity. Many comparisons have been made between simulated turbo code
performance and the ultimate capacity limits for the additive white Gaussian noise (AWGN) channel
(both binary-input and unconstrained, continuous-input channels). Table 1 gives these comparisons for
a particular family of long-block turbo codes of rates 1/2, 1/3, 1/4, and 1/6 and block length 10,200
information bits that were specified in a preliminary recommendation to the Consultative Committee for
Space Data Systems (CCSDS).2

The capacity limits in this table show the lowest possible bit signal-to-noise ratio (SNR), Eb/N0,
required to achieve arbitrarily small error probability over the AWGN channel using codes of these rates.
A comparison of these limits shows the improvement that theoretically is possible as a result of lowering
the code rate. For example, for a binary-input AWGN channel, rate-1/2 codes suffer an inherent 0.7-dB

1 Communications Systems and Research Section.
2 A draft of this proposal was presented at the CCSDS coding subpanel meeting, Paris, France, April 14–16, 1997. In a
later CCSDS meeting held in South Africa, January 15–17, 1998, the recommended block lengths were specified as 1784,
3568, 7136, 8920, and 16,384 bits.
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disadvantage relative to rate-1/3 codes, a 1.0-dB disadvantage relative to rate-1/4 codes, and a 1.8-dB
disadvantage relative to the ultimate capacity limit of −1.59 dB for rate → 0. These capacity limits can
be adjusted upward to allow for a fixed nonzero allowable bit-error rate [11], but the adjustments are tiny
for error-rate requirements below about 10−3.

Just as a constraint on code rate r raises the minimum threshold for reliable communication above
the ultimate capacity limit, as listed in Table 1, so does a constraint on a code’s information block size
k. The theoretical limits shown in Table 1 assume no constraint on block size. Approaching these limits
requires that block sizes grow arbitrarily large.

Table 1. Eb/N0 required for turbo codes defined on 10,200-bit infor-

mation blocks to achieve a bit-error rate (BER) of 10 −6, compared
with capacity limits.

Turbo codeCapacity limit, dB simulation
Rate results forContinuous Binary BER = 10−6,input input dB

1/2 0.00 0.19 0.98

1/3 −0.55 −0.50 0.37

1/4 −0.82 −0.79 0.13

1/6 −1.08 −1.07 −0.12

0 −1.59 −1.59 —

B. Problem Formulation

A classic lower bound on the error probability for codes of a specific block size is the sphere-packing
bound developed by Shannon [2]. In this article, we compare the behavior of this bound to the simulated
error probabilities achieved by a family of turbo codes of different block sizes.3 We also compare the
sphere-packing bound with the error probabilities achieved by an “average” code of the same block size
and rate and by various specific codes thought to be good before the advent of turbo codes.

The problem posed by Shannon assumes a (spherical) block code with M = 2k = 2rn equal-energy
codewords. Each codeword consists of n code symbols with signal energy nEs per codeword. The
channel adds Gaussian noise with variance N0/2 independently to each channel symbol (corresponding to
an AWGN channel with two-sided noise spectral density N0/2). In Shannon’s formulation of the problem,
the “code” constitutes the entire interface between the information and the channel, as shown in Fig. 1(a).
For such a code, the output symbols of the code (code symbols) are synonymous with the input symbols
to the channel (channel symbols).

In the parlance of modern communication systems, Shannon’s code envelops both an error-correcting
code and a suitable modulation scheme, as shown in Fig. 1(b). In Fig. 1(b) the code rate, defined as the
ratio of the number of information symbols to the number of code symbols, is distinct from the signaling
rate, defined as the ratio of the number of information symbols to the number of channel symbols. This
distinction disappears in Shannon’s model in Fig. 1(a), and we can refer to the code rate or signaling rate
interchangeably.

When the information symbols and the code symbols are drawn from same-size alphabets, as is typical
for the codes in Fig. 1(b), the code rate r satisfies 0 < r ≤ 1, and 1−r measures the fraction of redundancy

3 A similar evaluation of the sphere-packing bound in [6] does not explicitly illustrate the relationship between the bound
and simulated performance of such turbo code families.
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added by the code. For Shannon’s more general codes, the code-symbol alphabet can be arbitrarily large,
and it is convenient to fix the size of the information-symbol alphabet without matching it to that of
the code symbols. Thus, in our notation, the amount of information is measured in bits as k = log2M ,
and the code rate, or signaling rate, r = k/n, is the number of information bits per code symbol or
channel symbol, where a code symbol or channel symbol can be drawn from a continuous alphabet. In
these units, code (or signaling) rates can occupy the range 0 < r <∞. If restricted to binary codes and
a binary-input channel (i.e., both code symbols and channel symbols are binary), there are at most 2n

possible distinct codewords, and in this case code rates r > 1 are useless because some of the codewords
would have to be repeated.

CODE
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INFORMATION
SYMBOLS
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CODE
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CHANNEL

CODE
SYMBOLS

CHANNEL
SYMBOLS

≡

Fig. 1.  The problem considered by Shannon:  (a) Shannon’s model and (b) a typical communication system model.

II. Sphere-Packing Lower Bound on Code Performance

A. The Bound as Computed by Shannon

Shannon [2] derives the sphere-packing bound in the form4

Pw ≥ Qn(θs, A) (1)

where Pw is the codeword-error probability, A =
√

2Es/N0 =
√

2rEb/N0 is an amplitude corresponding
to the channel symbol SNR, Qn(θ,A) is the probability that an n-dimensional Gaussian random vector
with mean (A, 0, · · · , 0) and covariance In×n (where In×n is the n × n identity matrix) falls outside an
n-dimensional cone of half-angle θ around its mean, and θs is the angle such that the n-dimensional cone
of half-angle θs encompasses a fraction 1/M of the total solid angle of n-dimensional Euclidean space.
Denoting by Ωn(θ) the fractional solid angle within an n-dimensional cone of half-angle θ, then θs is the
solution to

Ωn(θs) =
1
M

(2)

Shannon writes exact expressions for the solid-angle function Ωn(θ) and the probability function
Qn(θ,A):

Ωn(θ) =
∫ θ

0

n− 1
n

Γ
(n

2
+ 1
)

Γ
(
n+ 1

2

)√
π

(sinφ)n−2dφ (3)

4 In this section and Section III.A, we follow Shannon’s problem formulation and solution closely, but some of our notation
is slightly different.
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and

Qn(θ,A) =
∫ π

θ

(n− 1)(sinφ)n−2

2n/2
√
πΓ
(
n+ 1

2

) ∫ ∞
0

sn−1e−(s2+nA2−2s
√
nA cosφ)/2dsdφ (4)

Next, he proceeds to derive asymptotic approximations to these functions that are valid for large n:

Ωn(θ) ∼
Γ(
n

2
+ 1)(sin θ)n−1

nΓ(
n+ 1

2
)
√
π cos θ

∼ (sin θ)n−1

√
2πn cos θ

(5)

and

Qn(θ,A) ∼ [G(θ,A)sin θ e−(A2−AG(θ,A) cos θ)/2]n
√
nπ
√

1 +G2(θ,A)sin θ[AG(θ,A) sin2 θ − cos θ]
(6)

where G(θ,A) = (1/2)[A cos θ +
√
A2 cos2 θ + 4]. Expressions (5) and (6) correspond to Eqs. (28) and

(51) in [2].

For large n, the expression in the numerator of Expression (6) dominates exponentially, so Shannon
defined an error exponent function, En(θ,A) 4= −(1/n) lnQn(θ,A). The limiting expression for the error
exponent becomes

E∞(θ,A) 4= lim
n→∞

En(θ,A) =
1
2
[A2 −AG(θ,A) cos θ]− ln[G(θ,A)sin θ] (7)

Similarly, defining a corresponding exponent for the solid-angle function, Rn(θ)
4= −(1/n) log2 Ωn(θ), we

have

R∞(θ) 4= lim
n→∞

Rn(θ) = − log2(sin θ) (8)

In principle, one can solve Expression (1) and Eq. (2), using either the exact formulas of Eqs. (3)
and (4) or the asymptotic formulas of Expressions (5) and (6), to obtain bounding relationships among
the four primary variables, Pw, M , n, and A. For the present application to turbo codes, we are interested
primarily in determining, for a given code rate r and desired error rate Pw, how small can the SNR be
as a function of the information block length k?

We used Mathematica to evaluate these bounds exactly for small code blocks (n no more than 100
to 200) and asymptotically for larger blocks. The results are shown in Fig. 2 for codes of rates 1/2, 1/3,
1/4, and 1/6 to achieve codeword-error probability Pw = 10−4. The figure shows the lower bound on the
minimum required Eb/N0 as a function of k.5

5 In Fig. 2 and succeeding figures, the bounds always are plotted as continuous curves versus k (or r), though the results
only make sense at discrete points such that M = 2k and n = k/r are both integers.
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Fig. 2.  The minimum required Eb /N0 implied by the Shannon sphere-
packing lower bound for codes with varying information block length k
and rates 1/6, 1/4, 1/3, and 1/2, operating over a continuous-input AWGN
channel and achieving Pw = 10−4.

Pw = 10−4

The solid portion of each curve in Fig. 2 was computed from the exact formulas of Eqs. (3) and (4), while
the dashed portion was computed from the asymptotic formulas of Expressions (5) and (6). Also shown are
horizontal asymptotes for each code rate, equal to the continuous-input capacity limits in the first column
of Table 1. The smooth transitions from the exact computations to the asymptotic computations indicate
that the asymptotic formulas already are very accurate (for the purpose of calculating the required SNR)
for information block sizes as low as 10 to 100 bits. The ultimate capacity limits are closely approached
within 0.1 dB only for block sizes 100,000 and higher.

This figure shows that, for any given code rate, the minimum threshold for reliable communication
is significantly higher than the corresponding ultimate limit for that code rate if the code block length
is constrained to a given finite size. For example, 1000-bit blocks have an inherent advantage of about
1.4 dB as compared with 100-bit blocks for each of the four code rates plotted. An additional gain of
about 0.5 dB potentially is obtained by going from 1000-bit blocks to 10,000-bit blocks, and another
0.2 dB by going to 100,000-bit blocks. After that, there is less than another 0.1 dB of improvement
available before the ultimate capacity limit for unlimited block sizes is reached.

B. A Normalized Version of the Bound

Additional insight into the implications of the bound may be obtained by normalizing the required SNR
relative to the capacity-limited minimum SNR for arbitrarily long code blocks. Define A∗

4=
√

22r − 1 so
that the corresponding (Eb/N0)∗

4= A2
∗/(2r) is the capacity-limited minimum bit SNR for the continuous-

input Gaussian channel [10]. These rate-dependent capacity-limited bit SNR values are listed in the first
column of Table 1, and they are plotted versus r as the bottommost curve in Fig. 7 later in this article.
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Now define ∆SNR∗ to be the excess required Eb/N0 above the corresponding capacity-limited value
at the given code rate r, namely ∆SNR∗

4= (A/A∗)2 = (Eb/N0)/(Eb/N0)∗. The value of ∆SNR∗
represents, for each code rate r, the minimum SNR penalty incurred by constraining the code to have
the finite information block size k. Figure 3 gives the same curves as in Fig. 2, but now normalized to
show ∆SNR∗ rather than the absolute required Eb/N0 for each code rate. On this graph, the bounds
for different code rates are nearly impossible to distinguish for block sizes greater than 10 or 100 bits.
By plotting ∆SNR∗, instead of absolute Eb/N0, versus k, instead of n, we have virtually eliminated
the dependence on code rate (over the range of code rates plotted, 1/2 to 1/6). The result is a nearly
universal curve for predicting the minimum required block length as a function of the excess Eb/N0 over
the (code-rate-dependent) capacity limits in Table 1.

For code rates higher than those plotted in Fig. 3, the bunching of the normalized curves is less
dramatic. A quantitative estimate of this effect for large k can be obtained by studying the variation
with r of the right side of Expression (11) in the next section. We remark that the normalized curves
would stay nearly independent of r for arbitrarily large r if the block size k on the x-axis were replaced
by min{k ln 2, n}, i.e., the smaller of the information block size (measured in nats) and the code block
size (measured in channel symbols).

C. A Simple Approximation for Large Blocks

In this section, we explore theoretically the reason for the convergence of the normalized bounds in
Fig. 3. First make the substitution A = γ cot θ for the amplitude signal-to-noise ratio in Eq. (4) or
Expression (6) for the probability function Qn(θ,A). The significance of this substitution stems from the
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Fig. 3.  The minimum required SNR above the code-rate-constrained
capacity limit, implied by the Shannon sphere-packing lower bound for
codes with varying information block length k and rates 1/6, 1/4, 1/3,
and 1/2, operating over a continuous-input AWGN channel and achiev-
ing Pw = 10−4.
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fact that cot θ is (asymptotically for large n) equal to the capacity-limited value of A for a fixed code
rate r, when θ is evaluated at the solution to Eq. (2), i.e., limn→∞ cot θ|θ=θs =

√
22r − 1 = A∗. Thus, γ

is asymptotically the ratio of the amplitude signal-to-noise ratio A to the corresponding capacity-limited
value A∗.

With this substitution, it can be shown that the asymptotic expression of Eq. (7) for the error exponent
has the following behavior for γ near 1 (ln γ near 0):

En(θ, γ cot θ) = (ln γ)2 1− sin2 θ

1 + sin2 θ
+O[(ln γ)3] (9)

Keeping only the first term in Eq. (9) and substituting the limiting expression sin θs = 2−r obtained from
Eqs. (2) and (8), we arrive at a particularly simple approximation to the bound, which is valid for large
n:

lnP−1
w ≤

[
ln
(
A

A∗

)]2(
k

r

)(
22r − 1
22r + 1

)
(10)

Finally, we transform this formula into more convenient decibel units by making the definitions
P−1
w,dB

4= 10 log10(P−1
w ) and ∆SNR∗,dB

4= 10 log10 ∆SNR∗, and thus obtain

k(∆SNR∗,dB)2 ≥
(

40
ln 10

)(
r
22r + 1
22r − 1

)
P−1
w,dB (11)

This version of the bound may be approximated further by noting that the function of r in parentheses
on the right side of Expression (11) is very insensitive to r for code rates between 0 and 1. This factor
increases slowly from 1/ ln 2 = 1.44 at r = 0, to 3/2 = 1.50 at r = 1/2, to 5/3 = 1.67 at r = 1. Thus, for
code rates between 0 and 1, the bound may be approximated by a formula independent of r:

k(∆SNR∗,dB)2 ≥ (27± 2)P−1
w,dB (12)

For example, for a required word-error rate of 10−4, this is approximated by a simple handy formula:

k(∆SNR∗,dB)2 >∼ 1000 (13)

This says that codes with information block lengths on the order of 1000 bits cannot possibly get closer
than about 1 dB from the corresponding rate-dependent capacity limits while achieving a word-error rate,
Pw, of 10−4. To approach the rate-dependent capacity limits within 0.5 or 0.25 dB at this Pw requires at
least 4000- or 16,000-bit blocks, respectively. These required block sizes approximately double, or halve,
if the Pw requirement is tightened to 10−8 or loosened to 10−2, respectively.

Figure 4 compares the normalized bounds from Fig. 3 with the approximate limiting formulas from
Expression (11). We see that the simple formula of Expression (12) or (13) is accurate within 0.2 dB for
information block sizes greater than about 1000 bits. For smaller block sizes, this approximation is not
very tight, and the exact or asymptotic computations should be used instead.
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Fig. 4.  A comparison of the normalized lower bound with the simple
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D. The Bound for Higher Code Rates

Thus far, we have concentrated on evaluating the sphere-packing bound for the range of code rates
that historically have been used for deep-space applications, namely 0.15 ≤ r ≤ 0.5. In this section, we
investigate briefly how the bound behaves at higher code rates.

We extended our evaluation of the sphere-packing bound of Expression (1) to many code rates higher
than those plotted in Fig. 2. These extended results are plotted in Fig. 5. This figure shows contour
lines of constant required Eb/N0 to achieve Pw = 10−4 for codes with different combinations of code
rate r and information block size k. The integer contour values are shown (in red) just above the
corresponding contour lines. The contours in this figure were obtained using a sophisticated nonuniform-
grid interpolation procedure [9]. Located between the contour lines in this figure are the discrete points
at which the bound was explicitly evaluated. These points are depicted as (blue) dots labeled with the
corresponding minimum Eb/N0 value for that particular combination of r and k. The Eb/N0 values
labeling the (blue) dots on the right edge of the figure were computed in the limit as block size k goes to
infinity, and they correspond to the capacity-limited values (Eb/N0)∗ as a function of rate.6

This figure has a wide range of potential applications. As we shall see in Section V, a graph of Eb/N0

versus the two fundamental code parameters r and k is a particularly convenient form for use as a code
selection tool. For deep-space applications, we are interested primarily in the region for code rates from 0
to 1/2 and for block lengths of 210=1024 bits and higher. However, the region of higher rates depicted on
the y-axis is useful in applications where bandwidth efficiency is paramount. In this case, as mentioned
earlier, the signaling rate on the y-axis should be interpreted as the overall spectral efficiency of the
combined coding and modulation (measured in bits/s/Hz/dimension).

6 The required Eb/N0 in the limit as k → ∞ is the same as the capacity-limited value despite our allowance of a fixed
nonzero error rate, Pw = 10−4. This contrasts with the results that would be obtained under a fixed nonzero bit-error-rate
requirement, for which the required Eb/N0 in the limit as k →∞ is slightly lower than the corresponding capacity-limited
value [11]. The explanation is that a fixed word-error-rate standard is increasingly harder to meet as the word size k
increases, and the minimum required Eb/N0 for achieving Pw = 10−4, in the limit as k → ∞, is the same as if we had
demanded an arbitrarily small error rate.
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III. Average Code Performance

A. Randomly Selected Codes for the Continuous-Input Channel

Shannon [2] also computed an upper bound on performance by a “random coding” method. His random
coding bound gives an exact expression for the ensemble average word-error probability, P̄w, averaged
over the ensemble of all possible (n, k) spherical codes, when the 2k codewords are selected independently
and completely at random, subject to an energy constraint imposed by the actual signal-to-noise ratio,
Eb/N0. The exact expression for P̄w can be calculated in terms of the solid-angle function Ωn(θ) and the
probability function Qn(θ,A) defined in Eqs. (3) and (4):

P̄w =
∫ π

0

{
1− [1− Ωn(θ)]

M−1
}[−∂Qn(θ,A)

∂θ

]
dθ (14)

In this equation, [−∂Qn(θ,A)/∂θ] is the probability density function corresponding to the probability
distribution function {1−Qn(θ,A)}.

Shannon derives an asymptotic formula for P̄w that can be expressed conveniently as the previously
derived asymptotic formula of Expression (6) for the lower bound Qn(θs, A) multiplied by a factor essen-
tially independent of n,

P̄w ∼ Qn(θs, A)
(

1 +
AG(θs, A)sin2(θs)− cos(θs)

2 cos(θs)−AG(θs, A)sin2(θs)

)
(15)
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This expression is valid as long as the angle θs, the solution to Eq. (2), is such that both the numerator
and the denominator of the fraction in parentheses on the right side of Expression (15) are positive. Inside
this range, the multiplicative factor varies from 1 for θs = cot−1A∗ (corresponding to the capacity limit)
to ∞ for θs = θc (the value for which the denominator in Expression (15) vanishes). For larger values of
θs (θs > θc), there is an alternative asymptotic expression (see the derivation leading to Eq. (61) in [2]),
but all of our evaluations for Pw = 10−4 were done using either Eq. (14) or Expression (15).

Figure 6 shows an evaluation of the ensemble average word-error probability, P̄w, using the exact ex-
pression of Eq. (14) for information block sizes less than about 50 bits and the asymptotic Expression (15)
for larger block sizes for the same code rates plotted in Fig. 2. We verified that the random coding bound
is virtually indistinguishable from the sphere-packing bound for information block sizes larger than a few
hundred bits.

We also extended our computations as shown in Fig. 6 to additional code rates in the range 0 ≤ r ≤ 1.
Figure 7 gives another comparison of the random coding bound with the sphere-packing lower bound,
now plotted versus code rate for various values of block size k. Again we see the convergence of the two
bounds for block sizes of a few hundred bits and higher over the entire range of code rates from 0 to 1.
For block sizes under 100 bits, however, the difference is small for r → 0 but widens considerably as
r → 1.
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Fig. 6.  A comparison of the random coding bound (ensemble average code
performance) with the sphere-packing lower bound, as a function of informa-
tion block size, for various code rates.

B. Randomly Selected Codes for the Binary-Input Channel

The bounds in Sections II and III.A are derived for the AWGN channel with equal-energy codewords
following Shannon’s formulation of this problem and allowing general spherical codes, as in Fig. 1(a),
with code symbols taken from a continuous alphabet. For many applications, it is instructive to study
how these bounds change if the codes are constrained to a binary alphabet or, equivalently, if the channel in
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k = 1024

Fig. 1(a) is constrained to have binary input. When restricted to binary codes and a binary-input channel,
code rates r > 1 are useless because some of the codewords would have to be repeated.

We set out to analyze how the average word-error probability, P̄w, changes under the constraint of
binary codes for a binary-input AWGN channel. Unfortunately, there is no exact expression analogous to
Eq. (14) for this constrained P̄w, so we instead evaluated a classic upper bound on P̄w due to Gallager [3]:

P̄w ≤ e−kEb/N0

{
min

0≤ρ≤1
2ρr+1

∫ ∞
0

e−y
2

√
2π

cosh1+ρ

[
y
√

2rEb/N0

1 + ρ

]
dy

}n
(16)

Gallager’s bound, Expression (16), is an upper bound on the ensemble average performance of randomly
selected (n, k) binary block codes on the binary-input AWGN channel.7

The minimum Eb/N0 satisfying Expression (16) for P̄w = 10−4 is plotted in Fig. 8 versus block size
k for the same code rates r as shown in Fig. 6 for the continuous-input channel. Figure 9 shows the
same results plotted versus code rate r for various values of block size k (analogously to Fig. 7 for the
continuous-input channel).

As expected, the curves in Fig. 8 drop to asymptotic limits that are slightly higher than the cor-
responding limits in Fig. 6. The asymptotes in Fig. 8 are the well-known capacity limits [11] for the
binary-input AWGN channel, and they differ most noticeably from the corresponding asymptotes for the
continuous-input channel in the case of r = 1/2 among the four rates plotted. Figure 9 focuses on the

7 Shannon, Gallager, and Berlekamp [4] also proposed a sphere-packing lower bound for discrete memoryless channels. We
plan to investigate the application of this bound to the binary-input AWGN channel either by suitable quantization or by
evaluating the asymptotic term o2(n) in [4], which cannot be ignored for moderate and short block sizes.
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rate dependence of the bound in Expression (16), and it is apparent that the required Eb/N0 increases
much more steeply beyond r = 1/2 for the binary-input channel than it does for the continuous-input
channel in Fig. 7. A quantitative assessment of this difference can be obtained by subtracting the required
Eb/N0 (in dB) shown in Fig. 7 for the continuous-input channel from the required Eb/N0 (in dB) shown
in Fig. 9 for the binary-input channel. This difference is plotted in Fig. 10.

The bottom curve in Fig. 10, for k = ∞, is the well-known difference in the capacity limits for the
binary-input versus the continuous-input channel. The binary-input constraint costs about 0.2 dB at
r = 1/2 and negligible amounts at lower rates. For higher rates, the penalty grows rapidly, approaching
∞ as r → 1.

The difference curves for finite block sizes exhibit similar behavior, but the deviations are higher than
at the capacity limit. However, we should not attach too much significance to the exact numerical values
plotted in Fig. 10 for finite k, because Eq. (14) plotted in Fig. 7 gives the true ensemble average code
performance for the continuous-input channel, whereas Expression (16) plotted in Fig. 9 gives only an
upper bound on the ensemble average code performance for the binary-input channel. Thus, the difference
curves in Fig. 10 overestimate the true penalty (averaged over the ensembles of randomly selected codes)
for invoking the binary-input constraint, and this overestimate goes to zero only in the capacity limit
(the curve for k =∞).

To get a rough idea of how much of the differences plotted in Fig. 10 is due to the binary-input
constraint and how much is due to the looseness of the binary-input bound for finite k, we simulated
the average performance of randomly selected binary codes of size (32,16). In this case, the required
Eb/N0 to achieve P̄w = 10−4 is only 6.1 dB, whereas the required Eb/N0 obtained from Expression (16)
and plotted in Fig. 9 for k = 16, r = 1/2, is 7.5 dB. Thus, 1.4 dB of the total difference of 2.2 dB shown in
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Fig. 10.  The difference between Gallager’s random coding bound
(upper bound on ensemble average code performance) for the
binary-input AWGN channel and the random coding bound (exact
ensemble average code performance) for the continuous-input
AWGN channel.
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Fig. 10 for these code parameters results from the looseness of the bound. The remaining 0.8 dB is the
penalty caused by requiring a binary-input constraint for the case of k = 16, r = 1/2, and this penalty is
0.6-dB higher than the corresponding penalty for rate-1/2 codes in the capacity limit.

Another estimate of the looseness of the Gallager bound, Expression (16), for finite values of k can be
obtained by observing the y-axis intercepts of the curves in Fig. 10. It can be argued that the required
Eb/N0 to achieve P̄w = 10−4, as rate r goes to zero for any fixed k, should approach the value required
to achieve Pw = 10−4 using an orthogonal code with 2k codewords. This result holds for both the
continuous-input and the binary-input channels.8 This implies that all of the curves in Fig. 10 should
emanate from the origin if they measured the true SNR difference of the average code performance for
the binary-input and continuous-input channels. Thus, the nonzero y-axis intercepts shown in Fig. 10,
ranging from about 0.15 dB for k = 1024 to 0.75 dB for k = 16, are due entirely to the looseness of the
Gallager bound.

IV. Performance of Actual Codes

A. Turbo Codes

Simulations by many researchers (see, for example, [5]) have shown that turbo codes can achieve small
error probabilities using SNRs just slightly higher than the capacity limits when the turbo code block is
very large (104 information bits or more). This has prompted many people to jump to the conclusion
that turbo codes, therefore, are good only for very large blocks.

It is true that turbo codes defined for smaller block lengths operate farther away from the capacity limit.
However, we have seen from Figs. 2 and 3 that the sphere-packing bound mandates a similar relationship
between block length and distance from the capacity limit. In this section, we present the results of turbo
code simulations demonstrating that these two dependencies mirror each other closely: The required
increase in ∆SNR∗ predicted by the sphere-packing bound for a given decrease in information block
size k is nearly equal to the same variation in ∆SNR∗ versus k within a given turbo code “family” (a set
of turbo codes of different block sizes but otherwise identical, i.e., based on the same constituent codes).

Figure 11 shows simulation results compared with the lower bounds of Fig. 2 for turbo codes with
rates 1/2, 1/3, 1/4, and 1/6 and varying block lengths.9 In this figure, the turbo codes with information
block length 10,200 are the same as those reported in Table 1.10 For each simulated turbo code, the
figure shows the required Eb/N0 to achieve a codeword-error rate Pw = 10−4.

Although there is more than a 2-dB performance differential between the simulation results for the
turbo code with k = 256, r = 1/3, and the code with k = 10, 200, r = 1/6, we see that the difference
between the simulations and the corresponding lower bounds remains approximately the same. For block
sizes k = 1024 and higher, all the simulated turbo codes deviate from their corresponding bounds by
about 0.7 dB. For smaller block sizes, this gap widens by a few tenths of a dB to 0.9 dB and 1.05 dB for
k = 512 and k = 256, respectively.

8 For fixed k as r goes to zero, we also have shown that Expression (16) reduces to P̄w ≤ e−k(
√
Eb/N0−

√
ln 2)2 for

ln 2 ≤ Eb/N0 ≤ 4 ln 2 and P̄w ≤ e−(k/2)(Eb/N0−2 ln 2) for 4 ln 2 ≤ Eb/N0. This upper bound for r → 0 matches an
upper bound derived in [10] on the performance of an orthogonal code with 2k codewords.

9 We first presented this comparison at the CCSDS Subpanel Meeting, Oberpfaffenhofen, Germany, November 7–8, 1996.

10 The simulated turbo codes are systematic parallel concatenated codes with two recursive convolutional components. The
backward connection vector for both component codes is 10011. The forward connection vector for both component codes
and rates 1/2 and 1/3 is 11011. The forward connection vectors for rate 1/4 are 10101 and 11111 (first component code)
and 11011 (second component code). The forward connection vectors for rate 1/6 are 11111, 11101, and 10111 (first
component code) and 11011 and 11111 (second component code). Puncturing of every other symbol from each component
code is necessary for rate 1/2. No puncturing is done for rates 1/3, 1/4, and 1/6.
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Fig. 11.  A comparison of turbo code performance with
that of the sphere-packing lower bound, as a function of
information block size, for various code rates.
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The significance of this half-theoretical, half-empirical result is that we might expect to construct
families of turbo codes that approach the ultimate theoretical limits uniformly regardless of code rate or
block size. For block sizes below about 1000, there might be an underlying theoretical reason that turbo
codes will start to progressively deviate from this uniformly close approach to the bound. Alternatively,
the uniformly close approach might be maintained by a yet-to-be-discovered tweaking of the turbo code
parameters.

In Fig. 6, we saw that the random coding bound nearly coincides with the sphere-packing bound in
the range where the performance of the CCSDS family of turbo codes deviates uniformly by 0.7 dB from
the sphere-packing bound. This implies that the performance of these turbo codes also deviates by about
0.7 dB from the ensemble average performance of randomly selected codes with the same k and r. Thus,
although turbo codes resemble random codes in their construction, this gives a performance measure of
the extent to which they are not truly random.

B. Other Good Codes

Figure 12 compares the turbo code performance results from Fig. 11 with the performance of some
previously known codes thought to be good before the advent of turbo codes.

The most direct comparisons can be made with the various concatenated coding systems used in
deep-space missions for the past two decades. These codes were constructed from an outer (255,223)
Reed–Solomon code concatenated with an inner convolutional code, and they employed rectangular in-
terleaving to break up the convolutional decoder’s bursty error events. The operations of concatenation
and interleaving produce a long block code with information block size k equal to the information block
size of the Reed–Solomon code (223× 8 = 1784 bits) multiplied by the depth I of the interleaving.

In Fig. 12, we show four families of such concatenated codes. Each family is obtained by keeping the
component codes constant and varying only the interleaving depth I. The first family is based on the
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CCSDS standard (7,1/2) convolutional code as the inner code; the case k = 4×1784 is labeled “Voyager,”
because the Voyager mission used this code with interleaving depth I = 4. The second family is based
on the ill-fated (15,1/4) convolutional code that was expected to extend the capabilities of the Galileo
mission until the spacecraft’s high-gain antenna (HGA) failed to unfurl; the case k = 2× 1784 is labeled
“Galileo HGA.” The third family is based on the (15,1/6) convolutional code used for the Cassini and
Pathfinder missions; the case k = 5 × 1784 is labeled “Cassini/Pathfinder.” For these three families of
codes, performance results are plotted for several interleaving depths besides the one actually used, and
the performance curves are extended toward k = ∞ by using ideal concatenated-coding performance
results that assume infinite interleaving (I =∞).

The fourth and final “family” of concatenated codes shown in Fig. 12 consists of one special code
[7] designed for Galileo’s low-gain antenna (LGA) mission after its high-gain antenna failed to deploy.
This code used a (14,1/4) convolutional inner code and a variable-redundancy Reed–Solomon outer code.
Unlike the other three concatenated codes, this code was designed to be decoded iteratively in four stages
of decoding; the results of the Reed–Solomon decoding in one stage assisted the convolutional decoding in
the next stage. There was a fixed interleaving depth, I = 8, and the eight outer Reed–Solomon codewords
had information block sizes of 161, 245, 225, 245, 195, 245, 225, and 245 8-bit symbols, respectively. The
resulting information block size for the entire code block was 14,288 bits.

In Fig. 12, we also have depicted the performance of three other nonconcatenated families of codes
often used for very short block lengths. One of these families consists of three famous “best-dmin” codes of
rate 1/2: the (8,4) extended Hamming code, the (24,12) extended Golay code, and the (48,24) quadratic
residue code. These three codes are the smallest known rate-1/2 codes that achieve minimum distance
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dmin = 4, 8, and 12, respectively. The results plotted in Fig. 12 assume maximum-likelihood soft-input
decoding for these three codes.

The remaining two nonconcatenated families of codes shown in Fig. 12 are based on plain (nonrecursive)
convolutional codes: the CCSDS standard (7,1/2) code with connection vectors (1111001, 1011011) and
the (3,1/2) code with connection vectors (111, 101). Normally, convolutional codes are not considered to
have a block length, and performance results are reported only as an average bit-error rate. However,
for the purpose of comparing convolutional-code performance with the sphere-packing bound, we have
reexamined these codes as block codes by terminating each code to various block sizes and evaluating the
word-error probability, Pw.

We see by comparing Figs. 12 and 2 that the performance curves for the family of famous best
codes and the various families of turbo codes closely parallel the lower bounds for their respective code
rates. This is not true, however, for the other families shown. For the concatenated code families,
the performance curves quickly flatten out as the block size is increased (by increasing the interleaving
depth). Deeper interleaving beyond a certain amount gains insignificantly compared with the available
coding gain predicted by the bound for the corresponding increase in block size k. These codes do not
fully exploit their large effective block lengths (including interleaving) to achieve the performance gains
theoretically possible with increasing k.

For the families of terminated convolutional codes, the required Eb/N0 to maintain a constant word-
error rate bottoms out and then begins to increase slowly as k is increased further. These upward-bending
curves depart even farther from the downward-trending bounds than do the flattened curves for the
concatenated codes. If a less stringent constant bit-error-rate requirement were substituted, the required
Eb/N0 for convolutional codes also would flatten out as a function of k, but the disparity between this
and the bound still is greater, because the convolutional code’s performance flattens out in a region of k
where the bound is dropping more steeply.

In the next section, we analyze more closely the differences between the actual performance curves in
Fig. 12 and the corresponding sphere-packing bounds in Fig. 2 or Expression (1).

C. Evaluation of a Code’s Imperfectness

The performance limit corresponding to the sphere-packing bound in Expression (1) would be reached
with equality only if the code were a perfect spherical code for the continuous-input AWGN channel, i.e.,
if equal-sized cones could be drawn around every codeword so as to completely fill n-dimensional space
without intersecting. Note that perfectness for the continuous-input AWGN problem requires that the
entire continuum of n-dimensional Euclidean space be filled by these nonintersecting cones, not just the
discrete points represented by binary n-vectors. Thus, under this definition, even the (7,4) Hamming code
and the (23,12) Golay code, which are rare examples of perfect binary codes, do not qualify as perfect
codes for the continuous-input AWGN channel. Indeed, Shannon [2] mentions that such codes exist only
if k = 1 or n = 1 or 2.

Even though perfectness is an unattainable goal, we already have seen that it can serve as an ap-
proachable benchmark for the families of turbo codes considered in Fig. 11. In this section, we define
the imperfectness of a given code as the difference between the code’s required Eb/N0 to attain a given
Pw and the minimum possible Eb/N0 required to attain the same Pw, as implied by the sphere-packing
bound for codes with the same block size k and code rate r. These differences, measured in dB, are shown
in Fig. 13 for each of the codes reported on in Fig. 12, with Pw = 10−4.

Note that the theoretical reference point for perfectness (measured in dB) consists of two compo-
nents defined in Section II.B: the rate-dependent, capacity-limited bit SNR, (Eb/N0)∗, and the block-
size-dependent (and only slightly rate-dependent) ∆SNR∗ plotted in Fig. 3. The imperfectness of any
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particular code in Fig. 13 is measured in units of dB-SNR, and the amount of imperfectness is the same
regardless of whether the SNR refers to bit SNR, symbol SNR, or codeword SNR.

The imperfectness plots in Fig. 13 quantitatively confirm the qualitative conclusions drawn in the
preceding section. The three famous best rate-1/2 codes, optimum in terms of minimum Hamming
distance for their respective code sizes, are very nearly perfect codes for the continuous-input AWGN
channel as well. Each of these codes falls short of perfectness by just under 0.5 dB. As already mentioned
in Section IV.A, the turbo code families for rates 1/2, 1/3, 1/4, and 1/6 approach perfectness uniformly
by about 0.7 dB for k > 1000 and all four code rates.

The curves in Fig. 13 for the two terminated convolutional codes quickly rise away from the perfectness
limit as their block sizes increase. A small part of the explanation of this effect is our imposition of a
more stringent word-error-rate requirement on codes that were designed to meet an average bit-error-rate
requirement. A bigger factor is that convolutional codes are encoded using only a fixed small number
of preceding bits and, hence, cannot exploit the potential of large blocks to reduce the required Eb/N0

at the rate predicted by Fig. 2. These two convolutional code families are most nearly perfect (just
under 1 dB of imperfectness) at their smallest possible block sizes, namely, an (8,2) code for the (3,1/2)
convolutional family and a (24,6) code for the (7,1/2) convolutional family; not so coincidentally, the
terminated convolutional codes with these dimensions also achieve the maximum possible dmin among
all linear codes of the same size and rate.

We also see from Fig. 13 that JPL’s long codes historically have marched toward perfectness in roughly
half-dB steps from Voyager to Cassini to the Galileo LGA to future missions that will use turbo codes.
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The concatenated code based on the CCSDS standard (7,1/2) code, used by the Voyager mission, misses
its perfectness limit by about 2.3 dB. The two concatenated codes based on the very long constraint-
length (15,1/6) and (15,1/4) convolutional codes, respectively, used by the Cassini mission and intended
for the Galileo HGA mission both miss by about 1.7 dB. For all three of these concatenated codes, the
amount of imperfectness varies no more than about 0.1 to 0.2 dB as the interleaving depth is varied. The
special four-stage concatenated code used by the Galileo LGA mission [7] approached perfectness within
1.2 dB, and now turbo codes have taken the most recent half-dB step to within 0.7 dB of perfectness
(inside the same range of block sizes appropriate for the concatenated codes).

The explanation for this progression is that the constraint-length-15 convolutional codes produced
a 0.5 dB to 0.7 dB (depending on interleaving depth) reduction in imperfectness compared with the
constraint-length-7 code. However, the price of this performance improvement was a 256-fold increase in
decoding complexity. The four-stage Galileo code with its iterative four-stage decoding procedure upped
the complexity ante by another factor of two (four stages, but only half as many decoder states per stage)
and produced another 0.5 dB reduction in imperfectness. The four-stage Galileo code was in a sense a
precursor to two-component turbo codes with their iterative decoding algorithm, and this code was able
to move about halfway toward the performance achieved by turbo codes of the same rate and block size.
Turbo codes move an additional 0.5 dB toward perfectness because these codes are designed specifically to
be iteratively decoded, and their decoders are much more effective at passing soft information throughout
all stages of iterations.

Figure 13 also leaves several questions begging for answers or further investigation. If we define
(somewhat arbitrarily) codes with imperfectness of less than 1 dB to be “nearly perfect,” then we see
in Fig. 13 a gap of around an order of magnitude in k, roughly centered around k = 100 bits, where no
nearly perfect codes are identified. This gap can be filled easily, in principle, by extending the family of
famous best-dmin codes to larger and larger values of k, using the criterion of maximizing the minimum
Hamming distance for each code size. However, the price in decoding complexity would be completely
prohibitive. For the three codes in this family shown in Fig. 13, the maximum-likelihood decoding
complexities are roughly comparable to those of the three convolutional codes with constraint lengths 3,
7, and 15, respectively. For example, maximum-likelihood decoding of the (48,24) quadratic residue
code using a minimal trellis and an optimum permutation of code symbols requires the evaluation of
860,156 trellis edges [8] for every 24-bit block. Thus, it is not practical to construct longer nearly perfect
codes by using traditional code design rules. From the other side of the gap, we see that the nearly perfect
families of turbo codes start to deviate more substantially from perfectness when their block sizes are
less than about k = 1000. But these families, unlike the best-dmin family, consist of codes with constant
decoding complexity per decoded bit. We are optimistic that the range of practically decodable, nearly
perfect codes can be extended to smaller values of k by finding turbo codes, or variants such as serially
concatenated turbo codes [12,13], that work well for shorter blocks.

The rates of the codes shown in Fig. 13 all fall within the range 0.15 ≤ r ≤ 0.5. Outside this range
of rates, the quest for nearly perfect codes gets tougher. For r → 0, a code’s approach to perfectness is
limited practically by a receiver’s inability to acquire and detect channel symbols with drastically lowered
symbol SNR. For r > 1/2, binary codes and modulations no longer suffice, as suggested by the steep climb
of the difference between the random coding bounds for the binary-input and continuous-input channels
in Fig. 10. For these higher rates, approaching perfectness as defined by the sphere-packing bound for
the continuous-input channel will require a combination of good coding and higher-order modulation
techniques.

We have seen that, for code rates between 1/2 and 1/6 and block lengths of 1000 bits and higher,
we have a family of turbo codes that can approach the limits shown in Fig. 5 uniformly within about
0.7 dB. Outside this region, we have not looked really hard to find good turbo codes, but we still have a
smattering of pretty good turbo codes that approach these limits within about 1 or 1.5 dB. Much more
work needs to be done in this area. Eventually we might revise our benchmark of perfectness to reflect
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additional constraints, such as a constraint imposed by the use of specific modulation schemes, on the
possible codes in these other regions.

It also should be pointed out that the imperfectness results in Fig. 13 can change markedly if a different
target word-error probability, Pw, is desired. For example, the turbo codes shown here lose their luster
of near-perfectness if the word-error-rate requirement is lowered to, say, 10−8, due to the turbo codes’
error floor. We are optimistic that nearly perfect codes for error-rate requirements lower than 10−4 can
be designed using serial concatenation [12–14].

V. Use of the Bounds as a Code Selection Tool

Given the existence of families of turbo codes that approach the performance bounds closely and
uniformly over a wide range of code parameters (i.e., block size and code rate), it is reasonable to utilize
the theoretical performance bounds as a tool for selecting the actual codes to be used for specific missions.
The information block size k and the code rate r are the two most fundamental parameters of the code that
affect subsystems external to coding. Bandwidth expansion, channel symbol detectability, and decoding
latency are some of the factors that depend only on these two parameters and not on the particular code.
Engineers designing external subsystems can now perform fundamental system trade-offs of performance
versus block size and code rate merely by reference to a universal table of bounds, because they can be
more or less assured of the existence of a practically decodable code that approaches the bound closely
at whatever block size and code rate they find desirable to fit their other system constraints.

This approach neatly separates trade-offs that are solely a function of block size and code rate from
trade-offs that depend on the particular code. It allows external subsystem engineers to make the most
important, most fundamental trade-offs up front, without getting bogged down in understanding the
detailed properties of a particular code. These fundamental trade-offs can be calculated simply and
accurately, without the need to simulate myriads of codes of different rates and sizes, because they are
based on pure theoretical curves.

Such a trade-off analysis based on theoretical bounds is meaningful only if the bounds accurately
reflect actual code performance as a function of k and r. As seen in Fig. 13, practically decodable, nearly
perfect codes have long been available for tiny blocks (k <∼ 24), and now turbo codes have extended the
region of nearly perfect, practically decodable codes to large blocks (k >∼ 1000). So, at least in these
regions, a trade-off analysis of the effects of varying k and r can justifiably be conducted by referring to
the theoretical bounds.

The code selection tool most conveniently would be based on a graph such as Fig. 5. The discrete
points on this graph, and the continuous contour lines of equal Eb/N0, correspond to a look-up table
of code performance as a function of the two fundamental code parameters k and r. A system engineer
simply would refer to this graph to determine how the minimum possible Eb/N0 varies with different
choices of k and r. The overall code selection procedure would consist of the following steps:

(1) Specify a desired codeword-error rate Pw (e.g., Pw = 10−4). This selection is dictated
by mission requirements.

(2) Before selecting a specific code, decide on reasonable values for two basic code param-
eters: code rate r and information block size k. Ideally, for best coding performance,
r → 0 and k → ∞. However, practical choices for r and k will be constrained by
other system considerations (e.g., bandwidth expansion, channel symbol detectability,
decoding latency, etc.). To determine the trade-off between these system considerations
and coding performance, refer to a theoretical coding limits graph (such as Fig. 5) for
codeword-error rate Pw, showing minimum Eb/N0 as a function of r and k, achievable
by a (generally mythical) perfect code C∗(r, k) constrained to have code rate r and block
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size k. This graph guides the system designer by showing the relative SNR penalties
incurred by choosing different combinations of the two basic code parameters r and k,
regardless of the specific code selected.

(3) Select a specific code C(r, k) of rate r and block size k. Additional system considerations
include encoder/decoder complexity, decoded error characteristics, and so forth. To
determine how coding performance is affected relative to the ideal assumptions of the
previous step, refer to a table or graph (such as Fig. 13) listing specific (imperfect) codes
C(r, k) and the corresponding amount of imperfectness incurred by using C(r, k) instead
of a perfect code C∗(r, k) of the same r and k. This imperfectness represents a relative
SNR penalty for using C(r, k) instead of C∗(r, k), and this penalty (in dB) should be
added to the minimum Eb/N0 (in dB) obtained from the theoretical graph in the previous
step.

Codes for deep-space applications generally will be selected from the range of code parameters r ≤ 1/2
and k ≥ 1000. Figure 14 provides a blow-up of this code parameter region taken from Fig. 5. In this
zoomed graph, we see that the contour lines of equal performance are nearly linear and relatively evenly
spaced, so the performance trade-offs are particularly simple for the values of r and k most useful for
deep-space codes.

Now that perfectness has been shown to be a closely approachable standard over a wide range of code
parameters, we anticipate that “coding gain” will fall out of favor as a measurement of the efficacy of
a code. Good codes are much closer in performance to a perfect code than to no code at all. Thus, a
code’s “gain” with respect to uncoded performance is much less meaningful as a selection criterion than
the code’s “loss” with respect to the ideal performance of a mythical perfect code. Engineers of the
future will choose codes based on tables of coding loss or imperfectness rather than coding gain. But, as
mentioned at the end of Section IV.C, this future will not fully arrive until the gaps are filled in where the
search for nearly perfect codes continues. In particular, finding nearly perfect codes for rates greater than
1/2 will require a combination of good coding and higher-order modulation techniques, and it may be
useful to substitute less stringent interim near-perfectness benchmarks that take into account constraints
imposed by a particular type of modulation.
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Another important caveat mentioned at the end of Section IV.C is that, while the imperfectness graphs
succinctly summarize each code’s performance, they do not indicate the complexity of decoding each code.
All of the codes depicted in Fig. 13 are practically decodable, but some are more easily decodable than
others. In situations where ease of decoding matters quantitatively, it will be desirable to develop graphs
of imperfectness versus decoding complexity to further support a wise code selection.

VI. Conclusion

The bounds evaluated in this article have been well-known for decades. However, the recent devel-
opment of turbo codes has stirred new interest in trying to understand how closely practical codes can
approach the theoretical bounds. The contribution of this article has been to reformulate Shannon’s
bounds in a form particularly conducive to analyzing the relative performance of families of turbo codes.
This reformulation led us to a trivially simple rule of thumb (accurate within 0.2 dB for information
block sizes greater than 1000 bits) for estimating how large the information block must be to approach
the capacity limit by a given amount. Our simulations showed that a family of similar turbo codes can
approach these bounds almost uniformly within 0.7 dB over a wide range of code rates and block sizes.
The implication is that turbo codes are very good codes (relative to optimal codes) even for block sizes
much smaller than previously believed.

The 0.7-dB degree of imperfectness (relative to the sphere-packing bound) achieved by turbo codes
is not unprecedented. For example, we have seen that some classic good codes, designed to maximize
the minimum Hamming distance, can approach perfectness even more closely than do these turbo codes.
However, we have never (before turbo codes) been able to design practically decodable codes that remain
nearly perfect as their block length is increased beyond a few tens of bits. Thus, turbo codes win out
over a tiny nearly perfect code, such as the Golay code, not because they are inherently more optimal
with respect to codes of their given rate and block length, but because they stay nearly perfect for much
longer block lengths, where the bounds allow a drastic reduction in the minimum required Eb/N0.

In the past, JPL advanced beyond tiny-block codes by building large concatenated codes based on the
(255,223) Reed–Solomon code. The information block length for these concatenated codes has ranged
from 1784 = 223 × 8 bits to 8920 = 5 × 223 × 8 bits, depending on interleaving depth, or even up to
14,288 bits for the variable-length Reed–Solomon concatenated code used for the Galileo LGA mission.
These codes gain some of the benefits of large blocks in terms of absolute required Eb/N0, and, hence,
they easily outperform tiny-block codes such as the Golay code. However, they are less perfect with
respect to the sphere-packing bound at their respective block lengths, and, thus, they are not able to
take maximum advantage of the full theoretical reduction in minimum required Eb/N0 afforded by their
longer blocks. Turbo codes, on the other hand, achieve and maintain a uniform level of near-perfectness
over a wide range of large block sizes.

From their inception, turbo codes with block sizes on the order of tens of thousands of bits have taken
the coding world by storm because of their close approach to the ultimate capacity limits. Since turbo
codes of these sizes perform so outstandingly well, turbo-code advocates sometimes have been seen as
trying to convince everyone else to accept a “one size (large) fits all” approach to coding. Now, after
recognizing their uniformly close approach to perfectness over a wide range of code rates and block sizes,
we see that the true message about turbo codes may be a lot closer to one code fits all sizes.
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